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ABSTRACT

In two-dimensional bow-like flows past a semi-infinite body, one must in

general expect a free-surface discontinuity,-4 n the form of a splash or spray

jet. -Similarly, if one reverses the flow direction, so generating a stern-

like flow, one must expect a train of waves at infinity. -For eMfpre, we have

shown in previous work that there is no stern-like flow without waves for a

flat-bottomed body with a single corner. However, this is not necessarily the

case for polygonal bodies with two or more corners, or for smooth bodies. The .

question of the existence of smooth, continuous solutions, having neither

splashes nor waves is considered in this paper. Conclusive numerical evidence

is given of the existence of such solutions. 4<
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SIGNIFICANCE AND EXPLANATION

- The flow at the extreme bow of a ship is examined within the framework of

the two-dimensional potential flow theory. For most bow shapes one must in

general expect a free-surface discontinuity, in the form of a splash or spray

jet. Reduction and if possible elimination of this splash is one of the

important problems of modern ship hydrodynamics.

In this paper it is shown numerically that there eixsts particular bow

shapes for which splashless flow exists. The bow shapes for which this

elimination of the splash is possible are bulbous. This theoretical result

agrees with the experiments of Baba (1976) and Miyata (1980) who found that a

bulbous bow can reduce the 'splash at the extreme bow of a ship.-
/

This work has potential applications to the design of ship bows.

//

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



SPLASHLESS BOW FLOWS IN TWO DIMENSIONS

E. 0. Tuck* and J.-M. Vanden-Broeck**

1. INTRODUCTION

The experimental work of Baba (1976) and Miyata (1980) indicate that a

bulbous how can eliminate or at least reduce the splash at the extreme bow of

a ship.

In the present paper we examine the flow at the bow of a ship within the

framework of the steady two-dimensional potential flow theory. This problem

was considered before by Vanden-Broeck and Tuck (1977), and Vanden-Broeck,

Schwartz and Tuck (1978). These authors attempted to construct models for

near stern flows and near bow flows. Although their scheme worked very well

for stern flows, they did not succeed in finding continuous solutions without

waves. On the other hand their work suggested the existence of waveless

solutions with splashes.

It should be emphasized that elimination of waves from a stern flow is

equivalent to elimination of splashes from a bow flow. That is if we have

been able in one way or another to construct a waveless stern flow, there is

no radiation condition for that flow, which can be reversed in direction to

yield a splashless bow flow.

Vanden-Broeck et. al.'s analysis was restricted to bow shapes consisting

of a plane lower surface and an oblique plane front. Although their work

rules out splashless and waveless solutions, the possibility still exists that

3
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by considering different families of bow shapes one could identify a special

shape for which splashless and waveless flow exists. This possibility is

strongly suggested by the recent work of Schmidt (1981) and Vanden-Broe'k and

Tuck (1984).

One of the main results of this paper is the numerical demonstration of

the existence of such shapes. The corresponding solutions model bow flows in

which the splash drag component has been completely eliminated. The bow

shapes for which this elimination is possible are bulbous.

In Section 2 we discuss some properties of bow flows with splashes. In

Section 3 we derive a numerical scheme which enables us to compute splashless

bow flows. p

2. FLOWS WITH SPLASHES

What is a splash? In the present two-dimensional context, a flow meeting

a body contains a splash if a portion of the incident stream is deflected

upward and backward in the form of a jet, which then falls freely for ever in

an approximately parabolic trajectory. Figure 1 shows a sketch of one

possible flow.

Such a flow is obviously an idealization of what might occur in practice

near the bow of a ship. The most glaring non-physical feature is that Figure

1 has the jet and the incident stream apparently passing across each other

without interference. The mathematical artifice that allows this to happen is

that these two pieces of the flow do not occupy the same space, but lie on

quite distinct "Riemann sheets".

In practice, unless some action is taken to avoid it, the fallina jet

must actually fall upon and hence interfere with the incident stream. The

avoiding action could involve diverting the jet, catching it in a bucket,

-2- "0



etc. Whether or not such action is taken there are interesting "St. Venant's

principle" type of questions to be answered; that is, does action taken or

interference caused at a point relatively far removed from the main domain of

interest affect the flow significantly in that domain? The answer is clearly

"No", providing the jet is suffi- ciently thin, but that observation merely

shifts the nature of the question to one concerning whether or not the jet is

indeed thin.

One form of "diverting action" for the jet is to re-introduce the third

dimension. That is, the flow near a bluff but not quite plane how could be

expected to be close to two-dimensional. However, the ballistic trajectory of

the jet will not in general quite lie in planes parallel to the incident

stream, and hence the interference will be interference to another (further

downstream) plane of nearly two-dimensional flow. Thus, paradoxically, one

might expect to be able to see flows like those sketched in Figure I more

easily in actual three-dimensional bow flows than in artificially-constructed

two-dimensional experiments.

AI

U

/ -

Figure 1: Sketch of a bow flow with splash.
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Indeed, this does appear to be the case. Even for not-so-bluff bows,

with V-shaped bows of small angle, a pronounced splash sheet often seems to be

present, and furthermore appears to be thin. At first sight, one would not

expect that a two dimensional flow model would have any validity for a fine

three-dimensional bow flow, but there may exist a suitable set of planes such

that the flow varies slowly with respect to a co-ordinate normal to these 0

planes. This concept is being explored by one of us (E.O.T.) in on-going

research.

If we return now to truly two-dimensional flow, there is no reason to

believe that the jet is thin in general. There will be a submerged stagnation

point Z on the body, with an attached stagnation streamline EF extending

to Z from a point F at upstream infinity beneath the free surface. All

streamlines originating from above F will be diverted into the jet, while

all below F will pass under the body. In the most general case, we must

expect that F lies at a distance below the free surface that is comparable

with the draft of the body, and hence the jet's thickness is likewise of the

order of the draft. i
Such a very thick jet is unlikely to be observed. So either

circumstances must be such as to produce a thin jet (perhaps no jet at all!)

or else the flow model of Figure 1 is not even qualitatively accurate. Indeed

Hanji (1976) has demonstrated experimentally some two dimensional bow flows

with a "forward wake", consisting of a closed region of high vorticity, lying

above an essentially-irrotational flow field, as sketched in Figure 2. It is

not implausible that such a rotating bubble is a final manifestation of a

thick jet that has so thoroughly (and non-conservatively) interfered with the

incident stream as to destroy irrotationality, and has converted itself into a

distributed vortex.

-4-
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Nevertheless, we are entitled to try to compute irrotational flows like

those of Figure 1, and efforts are being made by both of the present authors

to do so. In view of the above discussion, such efforts are worthwhile only

if the jet that is produced is in some sense thin. One approach is to exploit

existing thin-jet theories, e.g. as in Keller and Geer (1973) or Tuck (1976).

To indicate the type of mathematical considerations involved, whether or

not the jet is thin, let us note that all falling jets will become thin

eventually, and their asymptotic form will be a parabolic arc with a ballistic

velocity distribution, i.e. with a speed of fall proportional to the square

root of distance fallen, and a constant horizontal velocity. This is

consistent with an asymptotic form

JS

.00

• / *

Figure 2: Sketch of a bow flow with a "forward wake".

z(f) = -iaf 2 3 + bf 1 / 3 + 0(1), +- , (1)i

for the relatioTrship between complex potential f = t + iiP and co-ordinate

-5-



z x + iy, where a and b are real positive constants. For example, on

the streamline 4 - 0 to leading order as 4 +-,

x = b I/3  (2)

and

y = -a*2 /3 = -a(x/b)2  (3)

The corresponding velocity components are

3bu = - = constant (4)

4a2

and

v=-- 1 = - a (- y/a)1/2  (5)

as for a free ballistic projectile.

The pressure is given by Bernoulli's equation as

1 U2 - I u2+v2) gy(6(u2 + )-(6)

p 2 2

(ga - )02/3 + 0(1) . (7)

8a

j Providing we choose the constant a as

a = (2_)1/3 ,(8)

the pressure remains bounded throughout the jet as + . In fact, we

require p = 0 on both of its free boundaries, but we can only distinguish

between different finite values of 0 as f + +- by including more terms in

the asymptotic representation (1). The usefulness of (1) is that any attempt

to solve for a general flow of the type sketched in Figure 1 must build in an

analytic character like (1) near the jet asymptote DC, with a given by (8)

and b to be determined.
L|
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Although numerical solution of such problems seems somewhat distant, the

following -simple explicit example is of illustrative value. Suppose we

concentrate attention on the portion of Figure I lying above the dividing

streamline EF. Then the curve DEF can be replaced by a given boundary.

That is, this part of the flow will look like that for a stream in water of

finite non-uniform depth, in a channel that terminates with a barrier.

Suppose we normalise the stream velocity at AF to unity, i.e.

z + -f + constant, as + -W . (9)

We also normalise the length scale so that g = 9/8; hence a = 1. Then one

function satisfying both (1) and (9) is

Z(f) -if 2/3+ f /3+ 1.69i + -f + 0.85i (10)
1 - 1.3ie

-2 f  + ie2f

noting that the first term vanishes as * + - , and the second as * + + .

The various constants in (10) were chosen by trial and error, so that the

pressure would be as small as possible on the part CD of the streamline

= 0, and also on all of the streamline AB with J -0.15, and these

two streamlines are shown in Figure 3. The numbers written outside the curves

are values of p, with p = U = 1 and g = 9/8.

Although the pressure on AB and CD is not yet low enough for us to

claim that these streamlines are "free", Figure 3 at least demonstrates that

the type of jet-like flow sketched in Figure 1 can be achieved mathematically,

and represents a possible starting point for an accurate numerical solution.

An important output from any such solution would be information concerning

dependence of jet thickness upon the geometric shape of the body surface. We

should be particularly interested to establish conditions in which the jet can

be thin. Lacking such a numerical solution for the general problem, let us

now turn to an indirect search for the very special set of circumstances when

the jet is not just thin, but absent.

-7- a
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Figure 3: Computed bow flow with splash.

3 . SPLASHLESS BOWS

3.1 Formulation

We consider the steady two-dimensional potential flow of an inviscid

incompressible fluid past a semi-infinite body whose lower surface y* = -H,

x* < 0 is plane (see Figure 4). As x* + - =, the velocity is assumed to

approach a constant U. The level y* = 0 corresponds to the level of the

free surface at which the velocity is equal to U. We assume that the flow
I

rises up the rear face of the body up to a stagnation point S at which

separation occurs. Other flow configurations in which the flow separates

tanqentially from the body are also possible (Vanden-Broeck (1980)). However

t
they will not be considered in this paper.
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In previous work Vanden-Broeck and Tuck (1977) and Vanden-Broeck,

Schwartz and Tuck (1978) solved numerically the problem sketched in Figure 4

with a plane oblique rear face. All their solutions contain a train of waves

on the free surface. Therefore they can not serve as models for bow flows.

In this paper we generalize Vanden-Broeck et al's approach for bodies of

arbitrary shape. For most shapes, waves are present on the free surface.

However we shall see that there exists particular shapes for which the waves

are absent.

Y*A\

I

R

H

/\

L

U

Figure 4. Sketch of a flow past of a semi-infinite body.

We denote the potential function by 4* and the stream function by *.

We choose t* = 0 at the stagnation point and $* = 0 on the free surface

and on the surface of the body (see Figure 4). We denote by -K the value of

* at x* = 0, y* = -H. We shall seek the complex velocity u* - iv* as

-9-
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an analytic function of the complex potential f* * + i*. We make the

variables dimensionless by referring them to the velocity scale U and theIC SK
length scale j. Thus we introduce the new dimensionless variables

U

x + iy - (x* + iy*) (11)

u - iv - (u* - iv*) (12)
U

f=~i4 f* (* + i4*) (13)

Bernoulli's equation and the condition of constant pressure on the free

surface yield

y + E(u2 + v2) =, V = 0, * > 0 • (14)

Here e is defined by

U3
S2gK(15)

We find it convenient to define the new function T - i8 by the relation

T-ie
u - iv - e (16)

Relation (14) can now be rewritten as p
J e- sin 8d + ce = 0, = 0, * > 0 (17)

0

The function T - 10 is an analytic function of f = * + i* in the half

plane 0 ( 0. On = 0, its real part is the Hilbert transform of its

imaginary part, thus we have

1T8( dO (18)

Here T(f) and 8(f) denote respectively T($,0 ) and 6(*,0 ). The

integral in (18) is to be interpreted in the Cauchy principal value sense.

The kinematic condition on the body yields 0

-10-
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0 = 0, = 0, < -1 (19)

B - g(f), 0 = , -1 < < -b (20)

=20, 4 = 0, -b < * < 0 (21) 0
2

Here the constant b and the function g( ) define the shape of the body.

Relation (21) implies that the body is vertical for -b < 0 < 0. Our aim is

to identify particular values of b and c and a particular function g( )

for which no waves are present of the free surface. we shall restrict our

attention to bodies with continuous slope. Therefore we impose the conditions

g(-)= 0 (22)

g(-b) = (23)

2

Substituting (19)-(21) into (18) we get

(f 1 Xn1 1
-b +)

+---- g(O) d6+ S(0) d 24 . ..
-1 (24)

0

For given £, b and g( ) the problem reduces to finding a function

T(4) - iB(f) satisfying the nonlinear integro-differential equation defined
p

by (17) and (24). A numerical scheme to solve this equaiton is described in

the next subsection.

3.2 Numerical Results

We choose

• n ($ + X) 2 _ X- 1)2

g = (X 1) (25)2 (X, _ )2 _ ( _ 1)

This function satisfies the condition (22) and (23). The parameter X in

(25) will be adjusted to remove the waves on the free surface.

We introduce the N mesh points *I given by

I = -1 + (I- 1)E, I 1,...,N S_

-11-



Here E is the interval of discretization. We also introduce the N

corresponding unknowns

0/j\y

I00.41

0 2 6 10

I S

-0.41

Figure 5: Computed body profile and free surface profile •
for X= 0.3 and e = 0.5.

e(I * t ), I = ,.,

We find it convenient to define E as

E - 1/M

where M is an integer. With this particular choice

M =+1

We shall also use the N - 1 intermediate mesh points

= - (0 + 0b ), I =  1,...,N - 1

1+1/2 2 I+1 -1

From (19)-(21) we see that 0 has a jump discontinuity at * = 0 with

8(0_) - - and 8(0+) - 0. Therefore the values of 8 at 0 = are

known. In addition 01 = 0, so only N - 2 of the q1 are unknown. From -

-12-
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(20)-(21) we obtain M- 1 equations for

0I = ( I = 2,...,M (26)

We now compute 0

T1+1/2 1(1/2

in terms of 8 and b by applying the trapezoidal rule to the integral in

(24) with the mesh points I. The symmetry of the discretization enables us

to compute the Cauchy principal value as if it were an ordinary integral. The

error inherent in approximating the integral by an integral over a finite

interval was found to be negligible for NE large enough. We now use the

values of TI+1/2 and 81 to satisfy (17) at the mesh points 01+1/21

I = M + 2,...,N - 1. The integral in (17) was computed by the trapezoidal

rule. Thus we obtain N - M - 2 equations for the N - 2 unknowns 0.,

I = 2,...,N. Relation (26) provides M - 1 extra equations. Therefore we

have N - 3 equations for the N - 2 unknowns. 8

The last equation is obtained by expressing 8M+4 in terms of eM+1 = 0,

BM+2 and 8M+3 by an extrapolation formula. This equation is motivated by

the work of Vanden-Broeck and Tuck (1977) and Vanden-Broeck, Schwartz and Tuck

(1978). These authors showed that special care had to be taken near the

stagnation point to insure convergence of the numerical scheme.

For given values of c, b and X, the N - 2 equations are solved by

Newton method with the initial guess

= g(OI ), I =2,...,M

0 =, I) M + 2

Once a solution was obtained the profiles of the bow and of the free surface

were obtained by numerically integrating the identities

ax e-Tcos 8 (27) 0

-13-
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e-Tsin e (28)

For most values of C, b and X, waves are present on the free

surface. Moreover many values of £, b and I lead to unacceptable body

profiles which cross themselves. This is due to the fact that the profile of

the body is obtained in the parametric form x(O), y(O) -1 < 0 < -b.

Therefore the mathematical formulation does not prevent unacceptable crossing

of the profile.

yS0.6

3 6 9

-0.3

-0.6

-0.9

Figure 6: Computed body profile and free-surface profile
for A = 0.53 and C = 0.5.

-14-
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By running the scheme for many different values of e, A and b we were

able to identify particular values of these parameters for which waveless

solutions with no crossing in the profile of the bow exist.

Typical profiles for e = 0.5 and b = 0.2 are shown in Figures 5 and

6. These solutions were computed with E = 0.1 and N = 100. To check the

accuracy of our results we ran the scheme with E = 0.05 and N - 200. The

results were found to be indistinguishable within graphical accuracy from

those presented in Figure 5 and 6.

The profile in Figure 5 corresponds to A 0.3. A train of waves is

present on the free surface. This profile is qualitatively similar to the

solutions obtained by Vanden-Broeck and Tuck (1977) and Vanden-Broeck,

Schwartz and Tuck (1978). The main difference is that the corner has now been

rounded.

The profile in Figure 6 corresponds to A 0.53. The free surface is

completely waveless. Therefore this solution (when reversed in direction)

demonstrates numerically the existence of splashless bow flows in two

dimensions. It is interesting to note that the profile of the bow has a

definite bulbous character.

Other splashless bow flows could be obtained by using different functions

g(*) in (20). By analogy with the work of Vanden-Broeck and Tuck (1984) we

expect that all the corresponding bow shapes are bulbous.

1
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